How do I calculate the WRF using a 3 point method?

Modified on Fri, 24 Nov 2023 at 10:04 AM

Let the coordinates of point P1 be x1, y1, z1. P1 will define the origin of the WRF.

P1= [x1,y1,z1]

Let the coordinates of point P2 be x2, y2, z2. P2 will lie on the positive x-axis of the WRF.

P2= [x2,y2,z2]

Let the coordinates of point P3 be x3, y3, z3. P3 will lie in quadrant 1 or 2 of the xy plane of the WRF.

P3= [x3,y3,z3]

We must find the unit vectors along the x, y and z axes of the WRF. These will be used to construct the rotation matrix that defines the orientation of the WRF with respect to the BRF. From this rotation matrix, we will use the equations that are presented in the Euler angles Tutorial to extract the Euler angles that define the orientation of the WRF.

ux = [x2 - x1, y2 - y1, z2 - z1];
norm_ux = sqrt(ux[0]^2 + ux[1]^2 + ux[2]^2);

if norm_ux < 10 mm,
     Message: "Invalid Data: Points P2 and P1 are too close to each other"
     uvx = ux/norm_ux;

v13 = [x3 - x1, y3 - y1, z3 - z1];
norm_v13 = sqrt(v13[0]^2 + v13[1]^2 + v13[2]^2);

if norm_v13 < 10 mm,
    Message: "Invalid Data: Points P3 and P1 are too close to each other"
     uv13 = v13/norm_v13;

// uz = CrossProduct(uvx,uv13)
uz = [(uvx[1]*uv13[2])-(uvx[2]*uv13[1]), (uvx[2]*uv13[0])-(uvx[0]*uv13[2]), (uvx[0]*uv13[1])-(uvx[1]*uv13[0])];

// # the norm of this vector will be sin(theta), where theta is the angle between the two vectors, using the right-hand rule.
if !(norm_ux<10mm) and !(norm_v13 <10 mm)
     norm_uz = sqrt( uz[0]^2 + uz[1]^2 + uz[2]^2);
     uvz = uz/norm_uz;

// uvy = CrossProduct(uvz,uvx) 
uvy = [(uvz[1]*uvx[2])-(uvz[2]*uvx[1]), (uvz[2]*uvx[0])-(uvz[0]*uvx[2]), (uvz[0]*uvx[1])-(uvz[1]*uvx[0])] 

// R = [ uvx,  uvy, uvz], where uvx, uvy and uvz are column vectors
if abs(uvz[0]) == 1:
        beta_deg = uvz[0]*90
        gamma = arctan2(uvy[0],uvx[0])
        gamma_deg = rad2deg(gamma)
        alpha_deg = 0
        beta = arcsin(uvz[0])
        beta_deg = rad2deg(beta)
        gamma = arctan2(-uvy[0],uvx[0])
        gamma_deg = rad2deg(gamma)
        alpha = arctan2(-uvz[1],uvz[2])
        alpha_deg = rad2deg(alpha) 

result_WRF  = [ x1, y1, z1, alpha_deg, beta_deg, gamma_deg ]

Was this article helpful?

That’s Great!

Thank you for your feedback

Sorry! We couldn't be helpful

Thank you for your feedback

Let us know how can we improve this article!

Select atleast one of the reasons

Feedback sent

We appreciate your effort and will try to fix the article